35,428 research outputs found

    Bubble vector in automatic merging

    Get PDF
    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained

    Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange NMR

    Full text link
    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.Comment: 14 pages of text, 4 figure

    Splitting The Gluon?

    Full text link
    In the strongly correlated environment of high-temperature cuprate superconductors, the spin and charge degrees of freedom of an electron seem to separate from each other. A similar phenomenon may be present in the strong coupling phase of Yang-Mills theories, where a separation between the color charge and the spin of a gluon could play a role in a mass gap formation. Here we study the phase structure of a decomposed SU(2) Yang-Mills theory in a mean field approximation, by inspecting quantum fluctuations in the condensate which is formed by the color charge component of the gluon field. Our results suggest that the decomposed theory has an involved phase structure. In particular, there appears to be a phase which is quite reminiscent of the superconducting phase in cuprates. We also find evidence that this phase is separated from the asymptotically free theory by an intermediate pseudogap phase.Comment: Improved discussion of magnetic nature of phases; removed unsubstantiated speculation about color confinemen

    Mn L2,3_{2,3} edge resonant x-ray scattering in manganites: Influence of the magnetic state

    Full text link
    We present an analysis of the dependence of the resonant orbital order and magnetic scattering spectra on the spin configuration. We consider an arbitrary spin direction with respect to the local crystal field axis, thus lowering significantly the local symmetry. To evaluate the atomic scattering in this case, we generalized the Hannon-Trammel formula and implemented it inside the framework of atomic multiplet calculations in a crystal field. For an illustration, we calculate the magnetic and orbital scattering in the CE phase of \lsmo in the cases when the spins are aligned with the crystal lattice vector a{\vec a} (or equivalently b{\vec b}) and when they are rotated in the abab-plane by 45^{\circ} with respect to this axis. Magnetic spectra differ for the two cases. For the orbital scattering, we show that for the former configuration there is a non negligible σσ\sigma \to \sigma' (ππ\pi \to \pi') scattering component, which vanishes in the 45^\circ case, while the σπ\sigma \to \pi' (πσ\pi \to \sigma') components are similar in the two cases. From the consideration of two 90^\circ spin canted structures, we conclude there is a significant dependence of the orbital scattering spectra on the spin arrangement. Recent experiments detected a sudden decrease of the orbital scattering intensity upon increasing the temperature above the N\' eel temperature in \lsmo. We discuss this behavior considering the effect of different types of misorientations of the spins on the orbital scattering spectrum.Comment: 8 figures. In the revised version, we added a note, a reference, and a few minor changes in Figure 1 and the text. Accepted in Physical Review

    Estimation of Parameters in DNA Mixture Analysis

    Full text link
    In Cowell et al. (2007), a Bayesian network for analysis of mixed traces of DNA was presented using gamma distributions for modelling peak sizes in the electropherogram. It was demonstrated that the analysis was sensitive to the choice of a variance factor and hence this should be adapted to any new trace analysed. In the present paper we discuss how the variance parameter can be estimated by maximum likelihood to achieve this. The unknown proportions of DNA from each contributor can similarly be estimated by maximum likelihood jointly with the variance parameter. Furthermore we discuss how to incorporate prior knowledge about the parameters in a Bayesian analysis. The proposed estimation methods are illustrated through a few examples of applications for calculating evidential value in casework and for mixture deconvolution
    corecore